skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chowdhury, Niaz Bahar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhang, Ying (Ed.)
    ABSTRACT Treponema pallidum, the causative agent of syphilis, poses a significant global health threat. Its strict reliance on host-derived nutrients and difficulties inin vitrocultivation have impeded detailed metabolic characterization. In this study, we present iTP251, the first genome-scale metabolic model ofT. pallidum, reconstructed and extensively curated to capture its unique metabolic features. These refinements included the curation of key reactions such as pyrophosphate-dependent phosphorylation and pathways for nucleotide synthesis, amino acid synthesis, and cofactor metabolism. The model demonstrated high predictive accuracy, validated by a MEMOTE score of 92%. To further enhance its predictive capabilities, we developed ec-iTP251, an enzyme-constrained version of iTP251, incorporating enzyme turnover rate and molecular weight information for all reactions having gene-protein-reaction associations. Ec-iTP251 provides detailed insights into protein allocation across carbon sources, showing strong agreement with proteomics data (Pearson’s correlation of 0.88) in the central carbon pathway. Moreover, the thermodynamic analysis revealed that lactate uptake serves as an additional ATP-generating strategy to utilize unused proteomes, albeit at the cost of reducing the driving force of the central carbon pathway by 27%. Subsequent analysis identified glycerol-3-phosphate dehydrogenase as an alternative electron sink, compensating for the absence of a conventional electron transport chain while maintaining cellular redox balance. These findings highlightT. pallidum’s metabolic adaptations for survival and redox balance in nutrient-limited, extracellular host environments, providing a foundation for future research into its unique bioenergetics. IMPORTANCEThis study advances our understanding ofTreponema pallidum, the syphilis-causing pathogen, through the reconstruction of iTP251, the first genome-scale metabolic model for this organism, and its enzyme-constrained version, ec-iTP251. The work addresses the challenges of studyingT. pallidum, an extracellular, host-adapted pathogen, due to its strict dependence on host-derived nutrients and challenges inin vitrocultivation. Validated with strong agreement to proteomics data, the model demonstrates high predictive reliability. Key insights include unique metabolic adaptations such as lactate uptake for ATP production and alternative redox-balancing mechanisms. These findings provide a robust framework for future studies aimed at unraveling the pathogen's survival strategies and identifying potential metabolic vulnerabilities. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  2. Abstract Rhodopseudomonas palustris, a versatile bacterium with diverse biotechnological applications, can effectively breakdown lignin, a complex and abundant polymer in plant biomass. This study investigates the metabolic response ofR. palustriswhen catabolizing various lignin breakdown products (LBPs), including the monolignolsp-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol,p-coumarate, sodium ferulate, and kraft lignin. Transcriptomics and proteomics data were generated for those specific LBP breakdown conditions and used as features to train machine learning models, with growth rates as the target. Three models—Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machine (SV)—were compared, with ANN achieving the highest predictive accuracy for both transcriptomics (94%) and proteomics (96%) datasets. Permutation feature importance analysis of the ANN models identified the top twenty genes and proteins influencing growth rates. Combining results from both transcriptomics and proteomics, eight key transport proteins were found to significantly influence the growth ofR. palustrison LBPs. Re-training the ANN using only these eight transport proteins achieved predictive accuracies of 86% and 76% for proteomics and transcriptomics, respectively. This work highlights the potential of ANN-based models to predict growth-associated genes and proteins, shedding light on the metabolic behavior ofR. palustrisin lignin degradation under aerobic and anaerobic conditions. ImportanceThis study is significant as it addresses the biotechnological potential ofRhodopseudomonas palustrisin lignin degradation, a key challenge in converting plant biomass into commercially important products. By training machine learning models with transcriptomics and proteomics data, particularly Artificial Neural Networks (ANN), the work achieves high predictive accuracy for growth rates on various lignin breakdown products (LBPs). Identifying top genes and proteins influencing growth, especially eight key transport proteins, offers insights into the metabolic niche ofR. palustris. The ability to predict growth rates using just these few proteins highlights the efficiency of ANN models in distilling complex biological systems into manageable predictive frameworks. This approach not only enhances our understanding of lignin derivative catabolism but also paves the way for optimizingR. palustrisfor sustainable bioprocessing applications, such as bioplastic production, under varying environmental conditions. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  3. Abstract Understanding how photosynthetic organisms including plants and microbes respond to their environment is crucial for optimizing agricultural practices and ensuring food and energy security, particularly in the context of climactic change and sustainability. This perspective embeds back-of-the-envelope calculations across a photosynthetic organism design and scale up workflow. Starting from the whole system level, we provide a recipe to pinpoint key genetic targets, examine the logistics of detailed computational modeling, explore environmentally driven phenotypes, and feasibility as an industrial biofuel production chassis. While complex computer models or high throughput in vivo studies often dominate scientific inquiry, this perspective highlights the power of simple calculations as a valuable tool for initial exploration and evaluating study feasibility. Fermi calculations are defined as quick, approximate estimations made using back-of-the-envelope calculations and straightforward reasoning to achieve order-of-magnitude accuracy, named after the physicist Enrico Fermi. We show how Fermi calculations, based on fundamental principles and readily available data, can offer a first pass understanding of metabolic shifts in plants and microbes in response to environmental and genetic changes. We also discuss how Fermi checks can be embedded in data-driven advanced computing workflows to enable bio-aware machine learning. Lastly, an understanding of state-of-the-art is necessary to guide study feasibility and identifying key levers to maximize cost to return ratios. Combining biology- and resource- aware Fermi calculations, this proposed approach enables researchers to prioritize resource allocation, identify gaps in predictions and experiments, and develop intuition about how observed responses of plants differ between controlled laboratory environments and industrial conditions. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  4. Abstract Lignin is a universal waste product of the agricultural industry and is currently seen as a potential feedstock for more sustainable manufacturing. While it is the second most abundant biopolymer in the world, most of it is currently burned as it is a very recalcitrant material. Many recent studies, however, have demonstrated the viability of biocatalysis to improve the value of this feedstock and convert it into more useful chemicals, such as polyhydroxybutyrate, and clean fuels like hydrogen and n-butanol.Rhodopseudomonas palustrisis a gram-negative bacterium which demonstrates a plethora of desirable metabolic capabilities, including aromatic catabolism useful for lignin degradation. This study uses a multi-omics approach, including the first usage of CRISPRi inR. palustris, to investigate the lignin consumption mechanisms ofR. palustris, the essentiality of redox homeostasis to lignin consumption, elucidate a potential lignin catabolic superpathway, and enable more economically viable sustainable lignin valorization processes. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  5. Ellermeier, Craig D (Ed.)
    ABSTRACT During aerobic growth,S. aureusrelies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow inS. aureushave not been identified. Here, we show that acetate overflow is favored due to a thermodynamic bottleneck in the TCA cycle specifically involving the oxidation of succinate to fumarate by succinate dehydrogenase. This bottleneck reduces flux through the TCA cycle, making it more efficient forS. aureusto generate ATP via acetate overflow metabolism. Additionally, the protein allocation cost of maintaining ATP flux through the restricted TCA cycle is greater than that of acetate overflow metabolism. Finally, we show that the TCA cycle bottleneck providesS. aureusthe flexibility to redirect carbon toward maintaining redox balance through lactate overflow when oxygen becomes limiting, albeit at the expense of ATP production through acetate overflow. Overall, our findings suggest that overflow metabolism offersS. aureusdistinct bioenergetic advantages over a thermodynamically constrained TCA cycle, potentially supporting its commensal–pathogenic lifestyle. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  6. Imam, Saheed (Ed.)
    ABSTRACT Upon nutrient starvation,Chlamydia trachomatisserovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL’s stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate thatpgmhas the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown ofpgmin the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence. IMPORTANCEThis study uses a metabolic model to investigate factors that contribute to the persistence ofChlamydia trachomatisserovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence—that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena. 
    more » « less
  7. Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments. 
    more » « less
  8. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective. IMPORTANCE In this work, we reconstructed the first ME model for a purple nonsulfur bacterium (PNSB). Using the ME model, different aspects of R. palustris metabolism were examined. First, the ME model was used to analyze how reducing power entering the R. palustris cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. Furthermore, the ME model predicted electron flux through ferredoxin as a major bottleneck in distributing electrons to nitrogenase enzymes. Next, the ME model characterized different nitrogenase enzymes and successfully recapitulated experimentally observed temperature regulations of those enzymes. Identifying the bottleneck responsible for transferring an electron to nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase enzymes can have profound implications in metabolic engineering, such as hydrogen production from R. palustris . Another interesting application of this ME model can be to take advantage of its redox balancing strategy to gain an understanding of the regulatory mechanism of biodegradable plastic production precursors, such as polyhydroxybutyrate (PHB). 
    more » « less
  9. Gibon, Yves (Ed.)
    Abstract The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N−) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes. 
    more » « less